Abelian l Adic Representations

Towards Non-Abelian P-Adic Hodge Theory in the Good Reduction Case (Memoirs of the American Mathematical Society)

Towards Non-Abelian P-Adic Hodge Theory in the Good Reduction Case (Memoirs of the American Mathematical Society) by Martin C. Olsson
English | 2011 | ISBN: 082185240X | 157 Pages | PDF | 1.59 MB

P-Adic L-Functions and P-Adic Representations  eBooks & eLearning

Posted by interes at Sept. 13, 2016
P-Adic L-Functions and P-Adic Representations

P-Adic L-Functions and P-Adic Representations (Smf/Ams Texts and Monographs, Volume 3) by Bernadette Perrin-Riou and Leila Schneps
English | 2000 | ISBN: 0821819461 | 150 pages | DJVU | 2,7 MB

Representations of SL2(Fq) (Repost)  eBooks & eLearning

Posted by AvaxGenius at Oct. 18, 2017
Representations of SL2(Fq) (Repost)

Representations of SL2(Fq) By Cédric Bonnafé
English | PDF | 2011 | 196 Pages | ISBN : 0857291564 | 1.97 MB

Deligne-Lusztig theory aims to study representations of finite reductive groups by means of geometric methods, and particularly l-adic cohomology. Many excellent texts present, with different goals and perspectives, this theory in the general setting. This book focuses on the smallest non-trivial example, namely the group SL2(Fq), which not only provide the simplicity required for a complete description of the theory, but also the richness needed for illustrating the most delicate aspects.

Representations of SL2(Fq)  eBooks & eLearning

Posted by ChrisRedfield at June 3, 2014
Representations of SL2(Fq)

Cédric Bonnafé - Representations of SL2(Fq)
Published: 2010-10-25 | ISBN: 0857291564, 0857291580 | PDF | 200 pages | 3 MB

The Conference on L-Functions  eBooks & eLearning

Posted by step778 at Feb. 13, 2017
The Conference on L-Functions

Masanobu Kaneko, Lin Weng, "The Conference on L-Functions"
2006 | pages: 383 | ISBN: 981270504X | DJVU | 1,1 mb

Finitely Generated Abelian Groups and Similarity of Matrices over a Field [Repost]  eBooks & eLearning

Posted by ChrisRedfield at Nov. 16, 2017
Finitely Generated Abelian Groups and Similarity of Matrices over a Field [Repost]

Christopher Norman - Finitely Generated Abelian Groups and Similarity of Matrices over a Field
Published: 2012-01-25 | ISBN: 1447127293 | PDF | 381 pages | 2.95 MB

Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems  eBooks & eLearning

Posted by ChrisRedfield at Nov. 2, 2017
Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems

Jean-Claude Nedelec - Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems
Published: 2001-03-30 | ISBN: 0387951555, 1441928898 | PDF | 318 pages | 10.89 MB

Elliptic Curves, Modular Forms, and Their L-functions [Repost]  eBooks & eLearning

Posted by ChrisRedfield at Nov. 2, 2017
Elliptic Curves, Modular Forms, and Their L-functions [Repost]

Álvaro Lozano-Robledo - Elliptic Curves, Modular Forms, and Their L-functions
Published: 2011-02-08 | ISBN: 0821852426 | PDF | 195 pages | 7.81 MB

Quantum Groups and Their Representations [Repost]  eBooks & eLearning

Posted by ChrisRedfield at Oct. 31, 2017
Quantum Groups and Their Representations [Repost]

Anatoli Klimyk, Konrad Schmüdgen - Quantum Groups and Their Representations
Published: 1998-01-20 | ISBN: 3540634525, 3642646018 | PDF | 552 pages | 17.28 MB

Representations Des Espaces Tordus Sur Un Groupe Reductif Connexe P-adique  eBooks & eLearning

Posted by Rare-1 at Oct. 11, 2017
Representations Des Espaces Tordus Sur Un Groupe Reductif Connexe P-adique

Bertrand Lemaire, Guy Henniart, "Representations Des Espaces Tordus Sur Un Groupe Reductif Connexe P-adique"
French | ISBN: 2856298516 | 30 mai 2017 | PDF | 376 pages | 2.64 MB

Soit F un corps commutatif localement compact non archimédien, de caractéristique quelconque. Soient G un groupe réductif connexe défini sur F, et G^ un G-espace tordu lui aussi défini sur F. On suppose que l'ensemble G^(F) n'est pas vide, et on le munit de la topologie définie par F. On fixe un caractère (i.e. un homomorphisme continu dans C^) de G(F).